Published:

Aalto researchers create anticancer nanomaterials by simulating underwater volcanic conditions

The novel method enables making nanoclusters of zinc peroxide in an environmentally friendly manner.

Advertisement

Researchers at Aalto University, Finland, have developed anticancer nanomaterials by simulating the volcano-induced dynamic chemistry of the deep ocean. The novel method enables making nanoclusters of zinc peroxide in an environmentally friendly manner, without the use of additional chemicals. The as-synthesised zinc peroxide nanoparticles can be used as a tool for cancer therapy and against other complicated diseases.

The researchers have created these size-tailored nanoclusters by making use of the Leidenfrost effect. It is an event commonly observed in the kitchen while cooking. If you drop some water on a hot plate, droplets hover over the surface instead of making physical contact with it. In the Leidenfrost effect, a liquid close to an object much hotter than the liquid's boiling point produces an insulating vapour layer, preventing the liquid from boiling rapidly. Near volcano gates deep in the ocean or under special conditions in the lab, the vapour layer can cover a large area without rising away from the surface, while making the molecules in the liquid above behave in an exceptional way.

Leidenfrost effect makes water droplets on a hot plate hover over the surface instead of making physical contact with it. Credit: Mikko Raskinen/Aalto University

‘The dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process has not been introduced so far’, tells Professor Mady Elbahri at Aalto University.

‘We demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customised creation of nanoclusters of zinc peroxide. The hydrodynamic nature of the phenomenon ensures eruption of the nanoclusters towards a much colder region, giving rise to growth of monodisperse, size-tailored nanoclusters’, continues Elbahri.

‘Our study can pave the way for sustainable synthesis of monodispersed particles’, explains Ramzy Abdelaziz, a postdoctoral researcher at Elbahri's group and coauthor of the study.

From a biomedical perspective, peroxides act as an oxygen supplier and thus can be exploited in treatment of a wide variety of diseases induced by anaerobic and even cancerous cells.

‘Our nanoparticles have been investigated in terms of cytotoxic effect on suspension and adherent cells to prove their applicability as cancer nanotherapeutics’, says Duygu Disci-Zayed, a former research group member.

Anticancer nanomaterials erupt to the surface. Leidenfrost effect makes the molecules in the liquid above behave in an exceptional way. Credit: Aalto University

Having synthesised the monodispersed ZnO2 particles, the researchers performed a series of initial experiments to determine the impact of these nanoparticles on the cancer, and normal, healthy cells. According to their study, ZnO2 nanoparticles have the potential to kill tumor cells by apoptotic and non-apoptotic mechanisms.

The study was published today in Nature Communications.

For more information:
Professor Mady Elbahri, Aalto University
mady.elbahri@aalto.fi
Tel. +358 50 464 8990

Article: Mady Elbahri, Ramzy Abdelaziz, Duygu Disci-Zayed, Shahin Homaeigohar, Justyna Sosna, Dieter Adam, Lorenz Kienle, Torben Dankwort, Moheb Abdelaziz: Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics. Nature Communications 2017. DOI: 10.1038/NCOMMS15319

 

Receive our free weekly EU innovation newsletter, sign up now
Related subjects: Cancer, Medical research, Nanomaterials, Aalto University, Nanotechnology

Research Strategies The next Framework Programme
In October 2016, the Science|Network of universities, companies and innovation organisations gathered in Brussels to debate the future of EU R&D programmes. The result: A profusion of ideas, recommendations and warnings for the future of EU research and innovation.